Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(15): 10367-10380, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38569081

RESUMEN

Comparison of bonding and electronic structural features between trivalent lanthanide (Ln) and actinide (An) complexes across homologous series' of molecules can provide insights into subtle and overt periodic trends. Of keen interest and debate is the extent to which the valence f- and d-orbitals of trivalent Ln/An ions engage in covalent interactions with different ligand donor functionalities and, crucially, how bonding differences change as both the Ln and An series are traversed. Synthesis and characterization (SC-XRD, NMR, UV-vis-NIR, and computational modeling) of the homologous lanthanide and actinide N-heterocyclic carbene (NHC) complexes [M(C5Me5)2(X)(IMe4)] {X = I, M = La, Ce, Pr, Nd, U, Np, Pu; X = Cl, M = Nd; X = I/Cl, M = Nd, Am; and IMe4 = [C(NMeCMe)2]} reveals consistently shorter An-C vs Ln-C distances that do not substantially converge upon reaching Am3+/Nd3+ comparison. Specifically, the difference of 0.064(6) Å observed in the La/U pair is comparable to the 0.062(4) Å difference observed in the Nd/Am pair. Computational analyses suggest that the cause of this unusual observation is rooted in the presence of π-bonding with the valence d-orbital manifold in actinide complexes that is not present in the lanthanide congeners. This is in contrast to other documented cases of shorter An-ligand vs Ln-ligand distances, which are often attributed to increased 5f vs 4f radial diffusivity leading to differences in 4f and 5f orbital bonding involvement. Moreover, in these traditional observations, as the 5f series is traversed, the 5f manifold contracts such that by americium structural studies often find no statistically significant Am3+vs Nd3+ metal-ligand bond length differences.

2.
J Am Chem Soc ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662638

RESUMEN

Alkyl cyclopropyl ketones are introduced as versatile substrates for catalytic formal [3 + 2] cycloadditions with alkenes and alkynes and previously unexplored enyne partners, efficiently delivering complex, sp3-rich products. The key to effectively engaging this relatively unreactive new substrate class is the use of SmI2 as a catalyst in combination with substoichiometric amounts of Sm0; the latter likely acting to prevent catalyst deactivation by returning SmIII to the catalytic cycle. In the absence of Sm0, background degradation of the SmI2 catalyst can outrun product formation. For the most recalcitrant alkyl cyclopropyl ketones, catalysis is "switched-on" using these new robust conditions, and otherwise unattainable products are delivered. Combined experimental and computational studies have been used to identify and probe reactivity trends among alkyl cyclopropyl ketones, including more complex bicyclic alkyl cyclopropyl ketones, which react quickly with various partners to give complex products. In addition to establishing alkyl cyclopropyl ketones as a new substrate class in a burgeoning field of catalysis, our study provides vital mechanistic insight and robust, practical approaches for the nascent field of catalysis with SmI2.

3.
Dalton Trans ; 53(13): 5947-5956, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38456808

RESUMEN

In recent years, evidence has emerged that actinide (An) uptake at the enhanced actinide removal plant (EARP) at the UK's Sellafield nuclear site occurs via An interactions with an α-Fe13 Keggin molecular cluster during ferrihydrite formation. We here study theoretically the substitution of aquo complexes of the actinides Th-Pu onto a Na-decorated α-Fe13 Keggin cluster using DFT at the PBE0 level. The optimised Pu-O and Pu-Fe distances are in good agreement with experiment and Na/An substitutions are significantly favourable energetically, becoming more so across the early 5f series, with the smallest and largest ΔrG° being for Th and Pu at -335.7 kJ mol-1 and -396.0 kJ mol-1 respectively. There is strong correlation between the substitution reaction energy and the ionic radii of the actinides (Δrε0R2 = 0.97 and ΔrG° R2 = 0.91), suggesting that the principal An-Keggin binding mode is ionic. Notwithstanding this result, Mulliken and natural population analyses reveal that covalency increases from Th-Pu in these systems, supported by analysis of the occupied Kohn-Sham molecular orbitals where enhanced An(5f)-O(2p) overlap is observed in the Np and Pu systems. By contrast, quantum theory of atoms in molecules analysis shows that U-Keggin binding is the most covalent among the five actinides, in keeping with previous studies.

4.
J Phys Chem C Nanomater Interfaces ; 127(36): 17994-18000, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37736292

RESUMEN

Hubbard U-corrected density functional theory within the periodic boundary condition model in the WIEN2k code is used to simulate the actinide LIII and O K edge X-ray absorption near-edge structure (XANES) for UO2 and PuO2. Spin-orbit coupling effects are included, as are possible excitonic effects using supercells with a core hole on one of the atoms. Our calculations yield spectra in excellent agreement with previous experiments and superior to previous simulations. Density of states analysis reveals the mechanism behind the XANES peaks: the main contribution to the U/Pu LIII edges comes from the U/Pu d states hybridized with O p states, while as expected, the O p states primarily determine the O K edges of both UO2 and PuO2. The O K edges also feature O p hybridizing with U/Pu d and f states in the low-energy region and with U/Pu s and p states for the higher-energy peaks.

5.
Dalton Trans ; 52(38): 13787-13796, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37721024

RESUMEN

Despite p-block clusters being known for over a century, their application as catalysts to mediate organic transformations is underexplored. Here, the boron functionalized [P7] cluster [(BBN)P7]2- ([1]2-; BBN = 9-borabicyclo[3.3.1]nonane) is applied in the dearomatized reduction of pyridines, as well as the hydroboration of imines and nitriles. These transformations afford amine products, which are important precursors to pharmaceuticals, agrochemicals, and polymers. Catalyst [1]2- has high stability in these reductions: recycling nine times in quinoline hydroboration led to virtually no loss in catalyst performance. The catalyst can also be recycled between two different organic transformations, again with no loss in catalyst competency. The mechanism for pyridine reduction was probed experimentally using variable time normalization analysis, and computationally using density functional theory. This work demonstrates that Zintl clusters can mediate the reduction of nitrogen containing substrates in a transition metal-free manner.

6.
Chemphyschem ; 24(18): e202300366, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37366275

RESUMEN

The tri-thorium cluster [{Th(η8 -C8 H8 )(µ3 -Cl)2 }3 {K(THF)2 }2 ]∞ (Nature 2021, 598, 72-75) was reported to feature intriguing σ-aromatic bonding between the thorium atoms, a mode of metal-metal bonding unique in the actinide series. However, the presence of this bonding motif has since been challenged by others. Here, we computationally explore electron delocalisation in a molecular cluster fragment of [{Th(η8 -C8 H8 )(µ3 -Cl)2 }3 {K(THF)2 }2 ]∞ and examine its responses to an applied magnetic field using a variety of methods. We also discuss the importance of the choice of basis set for the Th atoms and issues regarding locating QTAIM bond critical points. When taken together, the computed data consistently suggest the presence of delocalised Th-Th bonding and Th3 σ-aromaticity.

7.
Nat Chem ; 15(4): 535-541, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36781910

RESUMEN

C(sp3)-rich bicyclic hydrocarbon scaffolds, as exemplified by bicyclo[1.1.1]pentanes, play an increasingly high-profile role as saturated bioisosteres of benzenoids in medicinal chemistry and crop science. Substituted bicyclo[2.1.1]hexanes (BCHs) are emerging bicyclic hydrocarbon bioisosteres for ortho- and meta-substituted benzenes, but are difficult to access. Therefore, a general synthetic route to BCHs is needed if their potential as bioisosteres is to be realized. Here we describe a broadly applicable catalytic approach that delivers substituted BCHs by intermolecular coupling between olefins and bicyclo[1.1.0]butyl (BCB) ketones. The SmI2-catalysed process works for a wide range of electron-deficient alkenes and substituted BCB ketones, operates with SmI2 loadings as low as 5 mol% and is underpinned by a radical relay mechanism that is supported by density functional theory calculations. The product BCH ketones have been shown to be versatile synthetic intermediates through selective downstream manipulation and the expedient synthesis of a saturated hydrocarbon analogue of the broad-spectrum antimicrobial, phthalylsulfathiazole.

8.
ACS Appl Mater Interfaces ; 14(47): 52815-52824, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36379472

RESUMEN

A thiomolybdate [Mo3S13]2- nanocluster is a promising catalyst for hydrogen evolution reaction (HER) due to the high number of active edge sites. In this work, thiomolybdate cluster films are prepared by spin-coating of a (NH4)2Mo3S13 solution both on FTO glass substrates as hydrogen evolving electrodes and on highly 00.1-textured WSe2 for photoelectrochemical water splitting. As an electrocatalyst, [Mo3S13]2- clusters demonstrate a low overpotential of 220 mV at 10 mA cm-2 in 0.5 M H2SO4 electrolyte (pH 0.3) and remain structurally stable during the electrochemical cycling as revealed by in situ Raman spectroscopy. Moreover, as a co-catalyst on WSe2, [Mo3S13]2- clusters enhance the photocurrent substantially by more than two orders of magnitude (from 0.02 to 2.8 mA cm-2 at 0 V vs RHE). The synergistic interactions between the photoelectrode and catalyst, i.e., surface passivation and band bending modification by the [Mo3S13]2- cluster film, promoted HER catalytic activity of [Mo3S13]2- clusters influenced by the WSe2 support, are revealed by intensity-modulated photocurrent spectroscopy and density functional theory calculations, respectively. The band alignment of the WSe2/[Mo3S13]2- heterojunction, which facilitates the electron injection, is determined by correlating UV-vis with photoelectron yield spectroscopy results.

9.
Nat Commun ; 13(1): 5923, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207297

RESUMEN

Covalency involving the 5f orbitals is regularly invoked to explain the reactivity, structure and spectroscopic properties of the actinides, but the ionic versus covalent nature of metal-ligand bonding in actinide complexes remains controversial. The tetrakis 2,6-di-tert-butylphenoxide complexes of Th, U and Np form an isostructural series of crystal structures containing approximately tetrahedral MO4 cores. We show that up to 3 GPa the Th and U crystal structures show negative linear compressibility as the OMO angles distort. At 3 GPa the angles snap back to their original values, reverting to a tetrahedral geometry with an abrupt shortening of the M-O distances by up to 0.1 Å. The Np complex shows similar but smaller effects, transforming above 2.4 GPa. Electronic structure calculations associate the M-O bond shortening with a change in covalency resulting from increased contributions to the M-O bonding by the metal 6d and 5f orbitals, the combination promoting MO4 flexibility at little cost in energy.

10.
J Phys Chem C Nanomater Interfaces ; 126(27): 11426-11435, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35865792

RESUMEN

DFT + U with occupation matrix control (OMC) is applied to study computationally bulk UO2 and PuO2, the latter for the first time. Using the PBESol functional in conjunction with OMC locates AFM and NM ground states for UO2 and PuO2, respectively, in agreement with experimental findings. By simulating the lattice parameter, magnetic moment, band gap, and densities of states, U = 4.0 eV is recommended for AFM UO2, yielding data close to experiments for all considered properties. U = 4.5 and 4.0 eV are recommended for NM and AFM PuO2, respectively, though much larger U values (c. 10 eV) are required to yield the most recently reported PuO2 band gap. For both oxides, several excited states have similar properties to the ground state, reinforcing the need to employ OMC wherever possible.

11.
J Am Chem Soc ; 144(30): 13946-13952, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35858251

RESUMEN

Reductive cyclizations of carbonyl compounds, mediated by samarium(II) diiodide (SmI2, Kagan's reagent), represent an invaluable platform to generate molecular complexity in a stereocontrolled manner. In addition to classical ketone and aldehyde substrates, recent advances in radical chemistry allow the cyclization of lactone and lactam-type substrates using SmI2. In contrast, acyclic esters are considered to be unreactive to SmI2 and their participation in reductive cyclizations is unprecedented. Here, we report a diastereoselective radical 1,4-ester migration process, mediated by SmI2, that delivers stereodefined alkene hydrocarboxylation products via radical cyclization of acyclic ester groups in α-carbomethoxy δ-lactones. Isotopic labeling experiments and computational studies have been used to probe the mechanism of the migration. We propose that a switch in conformation redirects single electron transfer from SmI2 to the acyclic ester group, rather than the "more reactive" lactone carbonyl. Our study paves the way for the use of elusive ketyl radicals, derived from acyclic esters, in SmI2-mediated reductive cyclizations.


Asunto(s)
Ésteres , Samario , Ciclización , Ésteres/química , Yoduros/química , Lactonas/química , Samario/química
12.
Nat Commun ; 13(1): 3931, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798750

RESUMEN

A range of reasons has been suggested for why many low-coordinate complexes across the periodic table exhibit a geometry that is bent, rather a higher symmetry that would best separate the ligands. The dominating reason or reasons are still debated. Here we show that two pyramidal UX3 molecules, in which X is a bulky anionic ligand, show opposite behaviour upon pressurisation in the solid state. UN″3 (UN3, N″ = N(SiMe3)2) increases in pyramidalization between ambient pressure and 4.08 GPa, while U(SAr)3 (US3, SAr = S-C6H2-tBu3-2,4,6) undergoes pressure-induced planarization. This capacity for planarization enables the use of X-ray structural and computational analyses to explore the four hypotheses normally put forward for this pyramidalization. The pyramidality of UN3, which increases with pressure, is favoured by increased dipole and reduction in molecular volume, the two factors outweighing the slight increase in metal-ligand agostic interactions that would be formed if it was planar. The ambient pressure pyramidal geometry of US3 is favoured by the induced dipole moment and agostic bond formation but these are weaker drivers than in UN3; the pressure-induced planarization of US3 is promoted by the lower molecular volume of US3 when it is planar compared to when it is pyramidal.

13.
Dalton Trans ; 51(22): 8855-8864, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35622422

RESUMEN

Treatment of [UIV(N3)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-) with excess Li resulted in the isolation of [{UIV(µ-NLi2)(TrenTIPS)}2] (2), which exhibits a diuranium(IV) 'diamond-core' dinitride motif. Over-reduction of 1 produces [UIII(TrenTIPS)] (3), and together with known [{UV(µ-NLi)(TrenTIPS)}2] (4) an overall reduction sequence 1 → 4 → 2 → 3 is proposed. Attempts to produce an odd-electron nitride from 2 resulted in the formation of [{UIV(TrenTIPS)}2(µ-NH)(µ-NLi2)Li] (5). Use of heavier alkali metals did not result in the formation of analogues of 2, emphasising the role of the high charge-to-radius-ratio of lithium stabilising the charge build up at the nitride. Variable-temperature magnetic data for 2 and 5 reveal large low-temperature magnetic moments, suggesting doubly degenerate ground states, where the effective symmetry of the strong crystal field of the nitride dominates over the spin-orbit coupled nature of the ground multiplet of uranium(IV). Spin Hamiltonian modelling of the magnetic data for 2 and 5 suggest U⋯U anti-ferromagnetic coupling of -4.1 and -3.4 cm-1, respectively. The nature of the U⋯U electronic communication was probed computationally, revealing a borderline case where the prospect of direct uranium-uranium bonding was raised, but in-depth computational analysis reveals that if any uranium-uranium bonding is present it is weak, and instead the nitride centres dominate the mediation of U⋯U electronic communication. This highlights the importance of obtaining high-level ab initio insight when probing potential actinide-actinide electronic communication and bonding in weakly coupled systems. The computational analysis highlights analogies between the 'diamond-core' dinitride of 2 and matrix-isolated binary U2N2.

14.
Phys Chem Chem Phys ; 24(14): 8245-8250, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319031

RESUMEN

The high alpha-activity of plutonium dioxide (PuO2) results in significant ingrowth of radiogenic helium (He) in the aged material. To safely store/dispose PuO2 or use in applications such as space exploration, the impact of He accumulation needs to be understood. In this work, defect energies obtained using a density functional theory (DFT) + U + D3 scheme are used in a point defect model constructed for PuO2 to predict the method of He incorporation within the PuO2 lattice. The simulations predict that the preferred incorporation site for He in PuO2 is a plutonium vacancy, however, the point defect model indicates that helium will be accommodated as an interstitial irrespective of He concentration and across a wide stoichiometric range. By considering the charge imbalance that arises due to incorporation of Am3+ ions it is shown that He accommodation in oxygen vacancy sites will dominate in PuO2-x as the material ages.

16.
Dalton Trans ; 51(15): 5929-5937, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35348160

RESUMEN

A potential connection has previously been proposed between the emergence of unexpected covalent behaviour in various transcurium complexes and the increasing stability of the +2 oxidation state in the later members of the actinide series. We recently used computational methods to study AnCl3, finding evidence for energy degeneracy driven covalency in the later actinides, and here present a comparative study of AnCl2. The An-Cl bond lengths of the latter divide into two data sets; Th-Np, Cm, Bk and Pu, Am, Cf-No. On average the An-Cl bond length decreases for both sets but, with significant increases between Np and Pu, and between Bk and Cf, unlike the former group (Pu, Am, Cf-No)Cl2 have significantly larger lengths than the corresponding trichlorides. Using a range of Natural Bond Orbital (NBO), Natural Resonance Theory (NRT) and Quantum Theory of Atoms In Molecules (QTAIM) metrics, the covalency of the dichloride bonds is analysed. We find that the first group of dichlorides are similar to their trichloride counterparts and possess significantly more covalent bonds than (Pu, Am, Cf-No)Cl2. We believe this change in covalent behaviour across the series for the dichlorides is due to a decreased involvement of the 6d orbital in the later elements (as a result of the f-d excitation energy exceeding the d-stabilisation energy of the actinide ions in question). Moreover, we find that unlike the trichlorides, where the QTAIM delocalisation index indicates that covalency plateaus/moderately increases, An-Cl covalency decreases across the second half of the series for AnCl2. We attribute this difference in behaviour to a lack of significant energy degeneracy driven covalency for the dichlorides, with the energy difference between the dichlorides' ß 5f and 3p Natural Atomic Orbitals being larger than for the trichlorides. Hence we find it is not the presence of a stable +2 oxidation state, but instead the extent of energy matching between the actinide 5f orbitals and the ligand 3p, that drives covalency in the transcurium chlorides.

17.
Nat Commun ; 12(1): 5649, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561448

RESUMEN

Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by 15N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the 15N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand 15N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies.

18.
Nature ; 598(7879): 72-75, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34425584

RESUMEN

Metal-metal bonding is a widely studied area of chemistry1-3, and has become a mature field spanning numerous d transition metal and main group complexes4-7. By contrast, actinide-actinide bonding, which is predicted to be weak8, is currently restricted to spectroscopically detected gas-phase U2 and Th2 (refs. 9,10), U2H2 and U2H4 in frozen matrices at 6-7 K (refs. 11,12), or fullerene-encapsulated U2 (ref. 13). Furthermore, attempts to prepare thorium-thorium bonds in frozen matrices have produced only ThHn (n = 1-4)14. Thus, there are no isolable actinide-actinide bonds under normal conditions. Computational investigations have explored the probable nature of actinide-actinide bonding15, concentrating on localized σ-, π-, and δ-bonding models paralleling d transition metal analogues, but predictions in relativistic regimes are challenging and have remained experimentally unverified. Here, we report thorium-thorium bonding in a crystalline cluster, prepared and isolated under normal experimental conditions. The cluster exhibits a diamagnetic, closed-shell singlet ground state with a valence-delocalized three-centre-two-electron σ-aromatic bond16,17 that is counter to the focus of previous theoretical predictions. The experimental discovery of actinide σ-aromatic bonding adds to main group and d transition metal analogues, extending delocalized σ-aromatic bonding to the heaviest elements in the periodic table and to principal quantum number six, and constitutes a new approach to elaborate actinide-actinide bonding.

19.
Chem Sci ; 12(23): 8096-8104, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-34194699

RESUMEN

Uranium nitride compounds are important molecular analogues of uranium nitride materials such as UN and UN2 which are effective catalysts in the Haber-Bosch synthesis of ammonia, but the synthesis of molecular nitrides remains a challenge and studies of the reactivity and of the nature of the bonding are poorly developed. Here we report the synthesis of the first nitride bridged uranium complexes containing U(vi) and provide a unique comparison of reactivity and bonding in U(vi)/U(vi), U(vi)/U(v) and U(v)/U(v) systems. Oxidation of the U(v)/U(v) bis-nitride [K2{U(OSi(O t Bu)3)3(µ-N)}2], 1, with mild oxidants yields the U(v)/U(vi) complexes [K{U(OSi(O t Bu)3)3(µ-N)}2], 2 and [K2{U(OSi(O t Bu)3)3}2(µ-N)2(µ-I)], 3 while oxidation with a stronger oxidant ("magic blue") yields the U(vi)/U(vi) complex [{U(OSi(O t Bu)3)3}2(µ-N)2(µ-thf)], 4. The three complexes show very different stability and reactivity, with N2 release observed for complex 4. Complex 2 undergoes hydrogenolysis to yield imido bridged [K2{U(OSi(O t Bu)3)3(µ-NH)}2], 6 and rare amido bridged U(iv)/U(iv) complexes [{U(OSi(O t Bu)3)3}2(µ-NH2)2(µ-thf)], 7 while no hydrogenolysis could be observed for 4. Both complexes 2 and 4 react with H+ to yield quantitatively NH4Cl, but only complex 2 reacts with CO and H2. Differences in reactivity can be related to significant differences in the U-N bonding. Computational studies show a delocalised bond across the U-N-U for 1 and 2, but an asymmetric bonding scheme is found for the U(vi)/U(vi) complex 4 which shows a U-N σ orbital well localised to U[triple bond, length as m-dash]N and π orbitals which partially delocalise to form the U-N single bond with the other uranium.

20.
J Am Chem Soc ; 143(26): 9813-9824, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34169713

RESUMEN

We report the use of 29Si NMR spectroscopy and DFT calculations combined to benchmark the covalency in the chemical bonding of s- and f-block metal-silicon bonds. The complexes [M(SitBu3)2(THF)2(THF)x] (1-M: M = Mg, Ca, Yb, x = 0; M = Sm, Eu, x = 1) and [M(SitBu2Me)2(THF)2(THF)x] (2-M: M = Mg, x = 0; M = Ca, Sm, Eu, Yb, x = 1) have been synthesized and characterized. DFT calculations and 29Si NMR spectroscopic analyses of 1-M and 2-M (M = Mg, Ca, Yb, No, the last in silico due to experimental unavailability) together with known {Si(SiMe3)3}--, {Si(SiMe2H)3}--, and {SiPh3}--substituted analogues provide 20 representative examples spanning five silanide ligands and four divalent metals, revealing that the metal-bound 29Si NMR isotropic chemical shifts, δSi, span a wide (∼225 ppm) range when the metal is kept constant, and direct, linear correlations are found between δSi and computed delocalization indices and quantum chemical topology interatomic exchange-correlation energies that are measures of bond covalency. The calculations reveal dominant s- and d-orbital character in the bonding of these silanide complexes, with no significant f-orbital contributions. The δSi is determined, relatively, by paramagnetic shielding for a given metal when the silanide is varied but by the spin-orbit shielding term when the metal is varied for a given ligand. The calculations suggest a covalency ordering of No(II) > Yb(II) > Ca(II) ≈ Mg(II), challenging the traditional view of late actinide chemical bonding being equivalent to that of the late lanthanides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...